Ranked #71 in Classical Mechanics
A concise but rigorous treatment of variational techniques, focussing primarily on Lagrangian and Hamiltonian systems, this book is ideal for physics, engineering and mathematics students. The book begins by applying Lagrange's equations to a number of mechanical systems. It introduces the concepts of generalized coordinates and generalized momentum. Following this the book turns to the calculus of variations to derive the Euler-Lagrange equations. It introduces Hamilton's principle and uses this throughout the book to derive further results. The Hamiltonian, Hamilton's equations, canonical... more